What is the 4th term in the expansion of (y+4x^3)^4?

(y+4x^3) ^4

2 Answers

#256yx^9#

Explanation:

It's #(a+b)^n =[color(white)(o)^nC_0*a^(n-0)*b^0] + [color(white)(o)^nC_1*a^(n-1)*b^1] + [color(white)(o)^nC_2*a^(n-2)*b^2] +[color(white)(o)^nC_3*a^(n-3)*b^3] +.........#

First term #color(white)(ww) # #=>(color(white)(i)^4C_0)(y^4)(4x^3)^0#
Second term #color(white)(i) # #=>(color(white)(i)^4C_1)(y^3)(4x^3)^1#
Third term #color(white)(wu) # #=>(color(white)(i)^4C_2)(y^2)(4x^3)^2#
Fourth term #color(white)(ir) # #=>(color(white)(i)^4C_3)(y^1)(4x^3)^3#

Fourth term #=4*y*64x^9# #color(white)(wwwwww) # #["as " color(white)(i)^4C_3 = 4]#

That is, #256yx^9#

Apr 12, 2018

#color(blue)(256yx^9)#

Explanation:

For binomial expansions of the form #(y+x)^n#, with #y# descending, we have:

#sum_(r=0)^(n)((n),(r))(y^(n-r)x^r)#

Where:

#((n),(r))=color(white)(0)^nC_(r)=(n!)/((r!(n-r)!)#

We require the 4th term. The power of #y# in the 4th term will be #1#:

So:

#4-r=1=>r=3#

We use this value of #r#:

#((4),(3))(y^(4-3)(4x^3)^3)#

simplifying:

#((4),(3))(64yx^9)#

#((4),(3))=(4!)/(3!(4-3)!)=(4xx3xx2xx1)/(3xx2xx1xx1)=(4xxcancel(3)xxcancel(2)xxcancel(1))/(cancel(3)xxcancel(2)xxcancel(1)xx1)#

#=4/1=4#

#:.#

The 4th term is therefore:

#4*(64yx^9)#

#color(blue)(256yx^9)#