#\int(x^2dx)/(\sqrt(4-9x^2))#?

I know it involves trigonometric substitution, and that
#\sqrt(a^2-x^2)# form with #x=a\sin\theta# (#-\pi/2\le\theta\le\pi/2#, #1-\sin^2x=\cos^2x#)

However, I am stuck at the substitution part here.
I know that #x=2/3\sin\theta#, #\thereforea=2/3#, but not what to do afterwards.

Would it be #dx=2/3\cos\theta#?

2 Answers
Apr 13, 2018

#int(x^2dx)/sqrt(4-9x^2)=2/27(arcsin(3/2x)-(3xsqrt(4-9x^2))/4)+C#

Explanation:

For an integral involving the root #sqrt(a^2-b^2x^2),# we may use the substitution

#x=a/bsintheta#

So, here, #a=2, b=3, x=2/3sintheta, dx=2/3costhetad theta#

Thus, we have

#(2/3)^2(2/3)int(sin^2thetacostheta)/sqrt(4-4sin^2theta)d theta#

#(4/9)(cancel2/3)(1/cancel2)int(sin^2thetacostheta)/sqrt(1-sin^2theta)d theta#

#1-sin^2theta=cos^2theta,# so

#4/27int(sin^2thetacostheta)/sqrt(cos^2theta)d theta#

#4/27int(sin^2thetacancel(costheta))/cancel(costheta)d theta#

Recalling that #sin^2theta=1/2(1-cos2theta)#,

#4/27intsin^2thetad theta=4/27(1/2)int(1-cos2theta)d theta#

#2/27(theta-1/2sin2theta)+C#

We need things in terms of #x.#

Since #x=2/3sintheta, sintheta=3/2x, theta=arcsin(3/2x)#

Furthermore, recall that #1/2sin2theta=sinthetacostheta#. We'll need to find the cosine using a quick sketch. Since #sintheta=(3x)/2,# we label the opposite and hypotenuse as follows, realizing that the adjacent side will be the radical originally found in the integral:

enter image source here

We see #costheta=sqrt(4-9x^2)/2, 1/2sin2theta=(3/2x)sqrt(4-9x^2)/2=(3xsqrt(4-9x^2))/4#

Thus,

#int(x^2dx)/sqrt(4-9x^2)=2/27(arcsin(3/2x)-(3xsqrt(4-9x^2))/4)+C#

Apr 13, 2018

#"Sometimes it is better to avoid"color(red)" trigonometric substitution"# #"and think about"color(blue)" another substitution "#that led us to known formula.
#(1)int1/sqrt(a^2-x^2)dx=sin^-1(x/a)+c#

Explanation:

#color(red)((2)intsqrt(a^2-x^2)dx=x/2sqrt(a^2- x^2)+a^2/2sin^-1(x/a)+c#

Here,

#I=intx^2/sqrt(4-9x^2)dx#

Let, #3x=t=>3dx=dt=>dx=1/3dt,and9x^2=t^2=>x^2=t^2/9#

#:.I=int((t^2/9))/sqrt(4-t^2)1/3dt#

#=1/27intt^2/sqrt(4-t^2)dt#

#=-1/27[int(-t^2)/sqrt(4-t^2)dt]#

#=-1/27[int(4-t^2-4)/sqrt(4-t^2)dt]#

#=-1/27[int(4-t^2)/sqrt(4-t^2)dt-int4/sqrt(4-t^2)dt]#

#=-1/27[intsqrt(4-t^2)dt-4int1/sqrt(4-t^2)dt]#

#=-1/27[intsqrt(2^2-t^2)dt-4int1/sqrt(2^2-t^2)dt]toApply(1)& (2)#

#=-1/27[t/2sqrt(2^2-t^2)+2^2/2sin^-1(t/2)-4sin^-1(t/2)]+c#

#=-1/27[t/2sqrt(4-t^2)+2sin^-1(t/2)-4sin^-1(t/2)]+c#

#=-1/27[t/2sqrt(4-t^2)-2sin^-1(t/2)]+c#

#=1/27[2sin^-1(t/2)-t/2sqrt(4-t^2)]+c#

Subst. back, #..tot=3x,t^2=9x^2#

#=1/27[2sin^-1((3x)/2)-(3x)/2sqrt(4-9x^2)]+c#