How do you simplify #(sec^2x-1)/sin^2x#?
3 Answers
Explanation:
First, convert all of the trigonometric functions to
Use the identity
Canceling out the
The answer is
Explanation:
We know that,
Therefore,
=
=
=
=
Explanation:
#"using the "color(blue)"trigonometric identities"#
#•color(white)(x)secx=1/cosx#
#•color(white)(x)sin^2x+cos^2x=1#
#rArr(1/cos^2x-cos^2x/cos^2x)/sin^2x#
#=((1-cos^2x)/cos^2x)/sin^2x#
#=(sin^2x/cos^2x)/sin^2x#
#=cancel(sin^2x)/cos^2x xx1/cancel(sin^2x)#
#=1/cos^2x=sec^2x#