How do you find the antiderivative of #tan(6x)dx#?

2 Answers
Apr 13, 2018

#I=1/6ln|sec6x|+c#

Explanation:

We know that
#inttanXdX=ln|secX|+c#
Here,
#I=inttan6xdx#
Let, #6x=u=>x=u/6=>dx=1/6du#
So,
#I=inttanu1/6du#
#=1/6inttanudu#
#=1/6ln|secu|+c ,where, u=6x#
#=1/6ln|sec6x|+c#

Apr 13, 2018

#(ln|sec(x)|)/6+C#

Explanation:

We need to find the anti-derivative of #tan(6x)#, and that will be its integral, i.e. #inttan(6x) \ dx#.

So, we gonna use u-substitution here.

Let #u=6x,:.du=6 \ dx,dx=(du)/6#

Then,

#inttan(6x) \ dx#

#=inttanu \ (du)/6#

Taking out the constant, we get,

#=1/6inttanu \ du#

Now, notice that #inttanu \ du=ln|sec(x)|+C#.

And so, we get,

#=1/6*ln|sec(x)|+C#

#=(ln|sec(x)|)/6+C#