Here,
#x^cosy+y^sinx=1#
Let, #u+v=1,where,#
#u=x^cosy and v=y^sinx#
Taking log both sides,
#=>lnu=lnx^cosy and lnv=lny^sinx#
#=>lnu=cosylnx...to(1) and lnv=sinxlny...to(2)#
Diff#.to(1)w.r.t. x# #"using "color(blue)"Product Rule and Chain
Rule"#
#1/u(du)/(dx)=cosyxx1/x+lnx (-siny)(dy)/(dx)#
#(du)/(dx)=x^cosy[cosy/x-sinylnx(dy)/(dx)]#
Now diff#.to(2)w.r.t.x# #"using "color(blue)"Product Rule and
Chain Rule"#
#1/v(dv)/(dx)=sinx1/y(dy)/(dx)+lnycosx#
#(dv)/(dx)=y^sinx[sinx/y(dy)/(dx)+cosxlny]#
Hence, #u+v=1=>(du)/(dx)+(dv)/(dx)=0=>(du)/(dx)=-(dv)/(dx)#
#x^cosy[cosy/x-sinylnx(dy)/(dx)]=-y^sinx[sinx/y(dy)/(dx)+cosxlny]#
#{y^sinxsinx/y-x^cosysinylnx}(dy)/(dx)=-y^sinxcosxlny-
x^cosycosy/x#
#(dy)/(dx)=-(y^sinxcosxlny+x^cosycosy/x)/(y^sinxsinx/y-
x^cosysinylnx)#