How do you find the limit #(4x)/(sqrt(2x^2+1))# as #x->oo#?

1 Answer

We have that

#(4x)/(sqrt(2x^2+1))=(4x)/(sqrt(x^2(2+1/x^2)))=(4x)/(absx*(sqrt(2+1/x^2)))#

If x goes to #+oo# the absolute value becomes positive hence #absx=x#
hence

#lim_(x->+oo) (4x)/(absx*(sqrt(2+1/x^2)))= lim_(x->+oo) (4x)/(x*(sqrt(2+1/x^2)))=4/sqrt2=2*sqrt2#

If x goes to #-oo# the absolute value becomes negative hence #absx=-x#
hence

#lim_(x->+oo) (4x)/(absx*(sqrt(2+1/x^2)))= lim_(x->+oo) (4x)/(-x*(sqrt(2+1/x^2)))=-4/sqrt2=-2*sqrt2#