Evaluate the integral by converting to polar coordinates# \int_{0}^{sqrt3} \int_{y}^{sqrt(4-y^2)} (dxdy)/(4+x^(2)+y^(2))#.?

1 Answer
Apr 14, 2018

#int_0^sqrt2 int_y^sqrt(4-y^2)(dxdy)/(4+x^2+y^2)=1/8piln2#

Explanation:

I will assume that the limits given in the question are wrong and that the actual integral is #int_0^sqrt2 int_y^sqrt(4-y^2)(dxdy)/(4+x^2+y^2)#

We are integrating the area between a circle of radius #4# centred at the origin and the function #y=x#.

We use #x=rcostheta,y=rsintheta#. The Jacobian #J(r,theta)=del(x,y)"/"del(r,theta)=r# so #dxdy=rdrd theta#. The limits are #0<=r<=2# and #pi"/"4<=theta<=pi"/"2#. Hence, we have

#int_0^sqrt2 int_y^sqrt(4-y^2)(dxdy)/(4+x^2+y^2)=int_(pi/4)^(pi/2)int_0^2 r/(4+r^2) drd theta=int_(pi/4)^(pi/2) [1/2ln(4+r^2)]_0^2 d theta=int_(pi/4)^(pi/2)1/2ln2d theta=1/8piln2#

A task for you would be to fill in the gaps above.