How do you find the indefinite integral of #int (e^(x+3)+e^(x-3))dx#?

1 Answer
Apr 14, 2018

#e^(x+3)+e^(x-3)+C#

Explanation:

Given: #inte^(x+3)+e^(x-3) \ dx#

#=inte^(x+3) \ dx+inte^(x-3) \ dx#

Let #u=x+3,:.du=dx#

#=inte^u \ du+inte^(x-3) \ dx#

Let #z=x-3,:.dz=dx#

#=inte^u \ du+inte^z \ dz#

#=e^u+e^z#

Substitute back #u=x+3,z=x-3# to get:

#=e^(x+3)+e^(x-3)#

Add a constant at the end.

#=e^(x+3)+e^(x-3)+C#