How can integrate this? #int_-∞ ^∞(e ^(-4t) ) dt#

2 Answers
Apr 17, 2018

Diverges

Explanation:

#int _(-oo) ^(oo) e^(-4t) dt #

#=> lim_(beta to oo) int_(-beta) ^(beta) e^(-4t) dt #

#=> lim_( beta to oo ) [ -1/4 e^(-4t) ]_-beta ^(beta ) #

#=> lim_(beta to oo ) { -1/4 e^(-4beta ) - ( -1/4 e^(4beta ) ) }#

#=> lim_(beta to oo ) { 1/4 e^(4beta) - 1/4 e^(-4beta) } #

as #beta -> oo => e^(-4beta ) to 0 #

but #beta -> oo => e^(4 beta) to oo #

Hence the integral is divergent

Apr 17, 2018

The integral does not converge

Explanation:

#int _(-oo) ^(oo) e^(-4t) dt = int _(-oo) ^0 e^(-4t) dt + int _0 ^(oo) e^(-4t) dt# provided that both integrals converge.

#int _(-oo) ^0 e^(-4t) dt = lim_(ararr-oo) int _a ^0 e^(-4t) dt#

# = lim_(ararr-oo)[-1/4e^(-4t)]_a^0#

# = lim_(ararr-oo)[-1/4 + 1/4e^(-4a)]#

But #lim_(ararr-oo)e^(-4a) = oo#, so the integral does not converge.

Therefore, #int _(-oo) ^(oo) e^(-4t) dt # does not converge.