How do you prove that #(cos3theta)/sintheta +(sin3theta)/costheta = 2cot2theta#?

1 Answer
Apr 19, 2018

Please see below.

Explanation:

#(cos3theta)/sintheta+(sin3theta)/costheta#

= #(cos3thetacostheta+sin3thetasintheta)/(sinthetacostheta)#

= #(2cos(3theta-theta))/(2sinthetacostheta)#

= #(2cos2theta)/(sin2theta)#

= #2cot2theta#