What is the derivative of #arctan (cos 2t)#?

2 Answers
Apr 21, 2018

#-(2sin2t)/(1+cos^2 2t#

Explanation:

#"differentiate using the "color(blue)"chain rule"#

#"Given "y=f(g(x))" then"#

#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#

#rArrd/dt(arctan(cos2t))#

#=1/(1+(cos2t)^2)xxd/dt(cos2t)xxd/dt(2t)#

#=1/(1+cos^2 2t)xx-sin2txx2#

#=-(2sin2t)/(1+cos^2 2t)#

Apr 21, 2018

# (dy)/(dt)=-(2sin2t)/(1+cos^2 2t)#

Explanation:

We know that,

#color(red)((1)d/(dx)(tan^-1x)=1/(1+x^2)#

#color(blue)((2)d/(dx)(cosx)=-sinx#

Let,

#y=f(t)=tan^-1(cos2t)#

Diff, w .r .to. #color(violet)"(t)"#

#(dy)/(dt)=color(red)(1/(1+(cos2t)^2))xxd/(dt)(cos2t)..color(red)(toApply(1)#

#=>(dy)/(dt)=1/(1+cos^2 2t)xx(color(blue)(-sin2t))d/(dt)(2t) color(blue)(to Apply(2)#

#=>(dy)/(dt)=-(sin2t)/(1+cos^2 2t)xx2#

#i.e. (dy)/(dt)=-(2sin2t)/(1+cos^2 2t)#