What is the evaluated integral of #int_5^8 1/(xsqrt(x^2-4))# ?

1 Answer
Apr 22, 2018

#I=1/2[sec^-1(8/2)-sec^-1(5/2)]#

Explanation:

Here,

#I=int_5^8 1/(xsqrt(x^2-4))dx#

Let,

#x=2secu=>dx=2secutanudu ,andsecu=x/2#

#x=5=>secu=5/2=>u=sec^-1(5/2)=a#

#x=8=>secu=8/2=>u=sec^-1(8/2)=b#

So,

#I=int_a^b1/(cancel(2secu)sqrt(4sec^2u-4))cancel(2secu)tanudu#

#=int_a^b tanu/sqrt(4tan^2u)du#

#=int_a^btanu/(2tanu)du#

#=1/2int_a^b1*du#

#=1/2[u]_a^b#

#=1/2[b-a]#

#I=1/2[sec^-1(8/2)-sec^-1(5/2)]#