How do I evaluate #int_0^pisin(x)dx?# Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Nam D. Apr 22, 2018 #2# Explanation: Given: #int_0^pisin(x) \ dx#. #=[-cos(x)]""_0^pi# #=-cos(pi)-(-cos(0))# #=-cos(pi)+cos(0)# #=-(-1)+1# #=1+1# #=2# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1635 views around the world You can reuse this answer Creative Commons License