We can solve above question #"without using"color(red)" Result(1)."#
Please see below.
#I=intsqrt(x^2-49)dx...to(A)#
#=int1*sqrt(x^2-49)dx#
#"Using "color(blue)"Integration by Parts"#
#int(u*v)dx=uintvdx-int(u'intvdx)dx#
#u=sqrt(x^2-49) and v=1#
#=>u'=1/(2sqrt(x^2-49))2x=x/sqrt(x^2-49)andintvdx=x#
So,
#I=sqrt(x^2-49)*x-intx/sqrt(x^2-49)*xdx#
#=x*sqrt(x^2-49)-intx^2/sqrt(x^2-49)dx#
#=xsqrt(x^2-49)-int((x^2-49)+49)/sqrt(x^2-49)#
#I=xsqrt(x^2-49)-intsqrt(x^2-49)dx-int49/sqrt(x^2-49)dx#
#I=xsqrt(x^2-49)-I-49int1/sqrt(x^2-7^2)dx...toFrom(A)#
#I+I=xsqrt(x^2-49)-49ln|x+sqrt(x^2-7^2)|+c#
#2I=xsqrt(x^2-49)-49ln |x+sqrt(x^2-49)|+c#
#=>I=x/2sqrt(x^2-49)-49/2ln|x+sqrt(x^2-49)|+c#