Use DeMoivre's Theorem to find the twelfth (12th) power of the complex number, and write result in standard form?

2[cos(LaTeX: \frac{\pi}{2} π 2 ) + i sin(LaTeX: \frac{\pi}{2} π 2 )]

1 Answer
Apr 23, 2018

# ( 2[cos( \frac{\pi}{2}) + i sin( \frac{\pi}{2} ) ] )^{12} = 4096#

Explanation:

I think the questioner is asking for

# ( 2[cos( \frac{\pi}{2}) + i sin( \frac{\pi}{2} ) ] )^{12} #

using DeMoivre.

# ( 2[cos( \frac{\pi}{2}) + i sin( \frac{\pi}{2} ) ] )^{12} #

#= 2^{12} (cos(pi/2) + i sin(pi/2))^12 #

#= 2^{12} (cos(6 pi) + i sin (6pi) ) #

# = 2^12 (1 + 0 i) #

# = 4096 #

Check:

We don't really need DeMoivre for this one:

#cos(pi/2) + i \sin(pi/2) = 0 + 1i = i#

#i^12 = (i^4)^3= 1^3=1#

so we're left with #2^{12}.#