#\sum_(n=2)^\infty ((x+2)^n)/(2^n\lnn)#?

"Find the radius of convergence and interval of convergence."
11.8

#a_n=((x+2)^n)/(2^n\lnn)#
#a_(n+1)=((x+2)^(n+1))/(2^(n+1)\ln(n+1))=((x+2)^n(x+2))/(2^n(2)\ln(n+1))#

Applying Ratio Test:
#\lim_(n\rarr\infty)|a_(n+1)/a_n|=\stackrel(L)(\infty)|((x+2)\lnn)/(2\ln(n+1))|...#

What should I do next?
I know that after I find the ROC with #\abs(x)\lt1#, I should test the endpoints...
...but I can't even get those right now. I'm stuck on the Ratio Test.

2 Answers
Apr 23, 2018

#R=2,# interval of convergence: #[-4, 0)#

Explanation:

So, lifting off from where you ended, let's apply the Ratio Test:

#a_(n+1)=(x+2)^(n+1)/(2^(n+1)ln(n+1))#
#a_n=(x+2)^n/(2^nlnn)#

Thus,

#L=lim_(n->oo)|(x+2)^(n+1)/(2^(n+1)ln(n+1))*(2^nlnn)/(x+2)^n|#

#(x+2)^(n+1)/(x+2)^n=(x+2)#

#2^n/2^(n+1)=1/2#

Thus, factoring the #1/2# and #(x+2)# outside, maintaining its absolute value, we get

#1/2|x+2|lim_(n->oo)ln(n)/ln(n+1)# (We drop the absolute values on the logarithms as we're heading toward infinity -- everything is positive)

#lim_(n->oo)ln(n)/ln(n+1)=oo/oo# -- indeterminate, we should quickly apply l'Hospital's Rule, rewriting with a hypothetical differentiable variable #y#, as #n# is not differentiable:

#lim_(n->oo)lnn/ln(n+1)=lim_(y->oo)lny/ln(y+1)=lim_(y->oo)(1/y)/(1/(y+1))=lim_(y->oo)(y+1)/y=1#

Thus, we see #lim_(n->oo)lnn/ln(n+1)=1,# and we know we have convergence when #L<1# or

#1/2|x+2|<1#

#|x+2|<2 -> R=2#

Now, determine the interval:

#-2<x+2<2#

#-4<x<0#

Test these endpoints:

#x=0:#

#sum_(n=2)^oocancel(2^n)/(cancel(2^n)lnn)=sum_(n=2)^oo1/lnn#

We'll use the Direct Comparison Test: #1/n<=1/ln(n)# on #[2, oo)#, we know this because the logarithm grows slower, and the smaller denominator ensures a larger sequence, so, since the smaller series #sum_(n=2)^oo1/n# diverges by the #p-#series test where #p=1#, so does the larger series.

This endpoint is thus excluded from the interval of convergence.

#x=-4:#

#sum_(n=2)^oo(-2)^n/(2^nlnn)=sum_(n=2)^oo((-1)^ncancel(2^n))/(cancel(2^n)lnn)=sum_(n=0)^oo(-1)^n/lnn#

Using the Alternating Series Test, we see #b_n=1/lnn# is decreasing on #[2, oo)# due to the growing denominator and #lim_(n->oo)1/lnn=0#

So, for this endpoint, we have convergence by the Alternating Series Test.

Interval of Convergence: #[-4, 0)#

Apr 23, 2018

The interval of convergence is #-4<=x<0#

Explanation:

#lim_(n->+oo)|a_(n+1)/a_n|=lim_(n->+oo)|((x+2)^(n+1)/(2^(n+1)ln(n+1)))/((x+2)^(n)/(2^(n)ln(n)))|#

#=lim_(n->+oo)|(x+2)/2lnn/(ln (n+1))|#

#=|(x+2)/2|# as #lim_(n->+oo)|lnn/(ln (n+1))|=1#

The series converges for

#|(x+2)/2|<1#

# -2 < x+2 <2#

#-4 < x <0#

For #x=0#

#sum_(n=2)^oo(x+2)^(n)/(2^(n)ln(n))=sum_(n=2)^oo2^n/(2^2lnn)=sum_(n=2)^oo1/lnn#

The series diverges for #x=0#

For #x=-4#

#sum_(n=2)^oo(-4+2)^(n)/(2^(n)ln(n))=sum_(n=2)^oo(-2)^n/(2^2lnn)=sum_(n=2)^oo (-1)^n/(lnn)#

This series converges conditionally for #x=-4#

The interval of convergence is #-4<=x<0#