First we remind ourselves #cos(2x)=cos (x+x)=cos^2x - sin^2x# and #sin(2x) = 2 sin x cos x#. Now let's approach from the other side.
#tan(pi/4 -x ) = {tan(pi/4) - tan x } / {1 + tan(pi/4) tan x}#
# = {1 - sin x/cos x} / {1 + sin x/cos x} #
# = {cos x - sin x}/{cos x + sin x} #
We know #cos 2x=cos^2x - sin^2 x# so our move is:
# = {cos x - sin x}/{cos x + sin x} cdot {cos x + sin x}/{cos x + sin x} #
# = { cos^2 x - sin^2 x}/{cos^2x + 2 cos x sin x + sin^2 x }#
#= {cos(2x) }/{1 + sin(2x)} quad sqrt#