How to verify Cos2x/(1+sin2x)=tan(pi/4-x)?

2 Answers

Please see a Proof in the Explanation.

Explanation:

#(cos2x)/(1+sin2x)#,

#=(cos^2x-sin^2x)/{(cos^2x+sin^2x)+2sinxcosx}#,

#={(cosx+sinx)(cosx-sinx)}/(cosx+sinx)^2#,

#=(cosx-sinx)/(cosx+sinx)#,

#={cosx(1-sinx/cosx)}/{cosx(1+sinx/cosx)}#,

#=(1-tanx)/(1+tanx)#,

#={tan(pi/4)-tanx}/{1+tan(pi/4)*tanx} quad# [because #tan(pi/4)=1#],

#=tan(pi/4-x)#, as desired!

Apr 26, 2018

First we remind ourselves #cos(2x)=cos (x+x)=cos^2x - sin^2x# and #sin(2x) = 2 sin x cos x#. Now let's approach from the other side.

#tan(pi/4 -x ) = {tan(pi/4) - tan x } / {1 + tan(pi/4) tan x}#

# = {1 - sin x/cos x} / {1 + sin x/cos x} #

# = {cos x - sin x}/{cos x + sin x} #

We know #cos 2x=cos^2x - sin^2 x# so our move is:

# = {cos x - sin x}/{cos x + sin x} cdot {cos x + sin x}/{cos x + sin x} #

# = { cos^2 x - sin^2 x}/{cos^2x + 2 cos x sin x + sin^2 x }#

#= {cos(2x) }/{1 + sin(2x)} quad sqrt#