Find all the complex solutions of the equation? #x^4 - i = 0#

Answers are:
#cos22.5^@ + isin22.5^@#,
#cos112.5^@ + isin112.5^@#,
#cos202.5^@ + isin202.5^@#,
#cos292.5^@ + isin292.5^@#

1 Answer
May 1, 2018

We know the answer has magnitude 1, so our equation becomes #(cos theta + i sin theta)^4 = i ##= cos ( 90^circ + 360^circ k ) + i sin ( 90^circ + 360^circ k) # or by De Moivre #4 theta = 90 ^circ + 360^circ k#, integer #k#, giving the listed answers.

Explanation:

Typically we denote a complex unknown as #z#.

#z^4 = i#

We'll want to do this in polar coordinates. Since #|i|=1# so will its fourth roots, so we don't need a magnitude factor here.

# z = cos theta + i sin theta #

Our equation becomes:

# (cos theta + i sin theta)^ 4 = i #

Most generally, for integer #k#,

# i = cos ( 90^circ + 360^circ k ) + i sin ( 90^circ + 360^circ k) #

By De Moivre's Theorem,

# (cos theta + i sin theta) ^4 = cos (4 theta) + i sin (4theta) #

Matching that up, we see

#4 theta = 90 ^circ + 360^circ k#

# theta = 22.5^circ + 90^circ k#

# z = cos(22.5 ^circ + 90^circ k) + i sin (22.5^circ + 90^circ k)#