How do you find the integral of #t^3 e^(-t^2)#?

1 Answer
May 1, 2018

#intt^3e^(-t^2) dt=-1/2e^(-t^2)(t^2+1)+c#, where #c# is a constant

Explanation:

Let #t^2=x#, then #2tdt=dx# and

#intt^3e^(-t^2) dt=1/2intxe^(-x)dx#

Now let us use integration by parts, which states that

#intu(x)v'(x)dx=u(x)v(x)-intv(x)u'(x)dx#

Let #u=x# and #dv=e^-x#, then #du=1# and #v=-e^(-x)#

and hence #intxe^(-x)dx=-xe^(-x)+inte^(-x)dx#

= #-xe^(-x)-e^(-x)+c_1# where #c_1# is a constant.

Hence #intt^3e^(-t^2) dt=1/2intxe^(-x)dx#

= #1/2[-xe^(-x)-e^(-x)+c_1]#

= #-1/2xe^(-x)-1/2e^(-x)+c_1/2#

= #-1/2t^2e^(-t^2)-1/2e^(-t^2)+c#

= #-1/2e^(-t^2)(t^2+1)+c#, where #c# is another constant