Setting #x=8y#, we have to prove that,
#cosec2y+cosec4y+cosec8y=coty-cot8y#.
Observe that, #cosec8y+cot8y=1/(sin8y)+(cos8y)/(sin8y)#,
#=(1+cos8y)/(sin8y)#,
#=(2cos^2 4y)/(2sin4ycos4y)#,
#=(cos4y)/(sin4y)#.
#"Thus, "cosec8y+co8y=cot4y [=cot(1/2*8y)]........(star)#.
Adding, #cosec4y#,
#cosec4y+(cosec8y+co8y)=cosec4y+cot4y#,
#=cot(1/2*4y).........[because, (star)]#.
#:. cosec4y+cosec8y+co8y=cot2y#.
Re-adding #cosec2y# and re-using #(star)#,
#cosec2y+(cosec4y+cosec8y+co8y)=cosec2y+cot2y#,
#=cot(1/2*2y)#.
#:.cosec2y+cosec4y+cosec8y+co8y=coty, i.e., #
# cosec2y+cosec4y+cosec8y=coty-cot8y#, as desired!