How do you prove #(1+tan^2x)/(1-tan^2x)=1+tan2x.tanx# ?
2 Answers
Check the explanation below
Explanation:
Using the Double Angle Identities
#color(red)(cos^2x-sin^2x=cos2x)# #color(red)(2sinxcosx=sin2x#
I hope this was helpful :)
We seek to prove the identity:
# (1+tan^2x)/(1-tan^2x) -=1+tan2xtanx#
We can utilise the tangent double angle formula:
# tan2A -= (2tanA)/(1-tan^2A) #
Consider the RHS:
# RHS = 1+tan2xtanx #
# \ \ \ \ \ \ \ \ = 1+((2tanx)/(1-tan^2x))tanx #
# \ \ \ \ \ \ \ \ = 1+(2tan^2x)/(1-tan^2x)#
# \ \ \ \ \ \ \ \ = ((1-tan^2x)+(2tan^2x))/(1-tan^2x)#
# \ \ \ \ \ \ \ \ = (1+tan^2x)/(1-tan^2x)#
# \ \ \ \ \ \ \ \ = LHS \ \ \ # QED