Find the intersection. #y=sqrt(36-x^2)# and #y=8-x# ?

1 Answer
May 2, 2018

(5.4,2.6) and (2.6, 5.4)

Explanation:

If #y=sqrt(36-x^2)# and #y=8-x# then

#sqrt(36-x^2)=8-x#

Square both sides

#36-x^2=(8-x)^2#

Expand and collect like terms

#36-x^2=64-16x+x^2#

#2x^2-16x+28=0#

Divide by 2

#x^2-8x+14=0#

Use the formula

#x=[-(-8)\pmsqrt(8^2-(4xx1xx14))]/2#

#x=[8\pmsqrt(8)]/2#= #=[8\pm2sqrt2]/2#

#x=4+sqrt2# or #x=4-sqrt2#

#x=5.4142135624 or x =2.5857864376#

Substitute these into #y=8-x# to find the corresponding #y# values

#y= 8-5.4 => y =2.6#

and #y=8-2.6 =>y=5.4#