How do you evaluate #5^ { 3} \div 5^ { - 1}#?

2 Answers
May 3, 2018

#625#

Explanation:

#"using the "color(blue)"law of exponents"#

#•color(white)(x)a^m/a^n=a^((m-n))#

#rArr5^3-:5^-1=5^3/5^-1#

#color(white)(xxxxxxxx)=5^(3-(-1))=5^4#

#color(white)(xxxxxxxxxx)=5xx5xx5xx5xx=625#

May 3, 2018

#5^4 = 625#

Explanation:

One of the laws of indices deals with negative indices:

#x^-m = 1/x^m" or "1/x^-n = x^n#

#5^3/color(blue)(5^-1) = 5^3 xx color(blue)(5^1)#

Another law of indices is #x^m xx x^n = x^(m+n)#

#5^3 xx 5^1 = 5^4#

#5^4 = 625#