#" "#
Given the expression: #color(red)((\frac { x ^ { 7} y ^ { 3} } { x } ) ^ { \frac { 1} { 3} }#
#"Exponents formula required: "#
#color(blue)( a^m/a^n = a^(m-n)#
#color(blue)( a^m*a^n = a^(m+n)#
#color(blue)(( a^m)^(1/n) = a^(m/n)#
#color(green)("Step 1:"#
Rewrite the given expression: #color(brown)((\frac { x ^ { 7} y ^ { 3} } { x } ) ^ { \frac { 1} { 3} }# as
#[[(x^7*y^3)^(1/3)]]/[[x^(1/3)]#
Rewrite as:
#[(x^7)^(1/3)*(y^3)^(1/3)]/x^(1/3)#
#color(green)("Step 2:"#
Use: #color(blue)(( a^m)^(1/n) = a^(m/n)#
Simplify:
#(x^(7/3)*y^(3/3))/x^(1/3)#
#color(green)("Step 3:"#
#(x^(7/3)*y^1)/x^(1/3)#
#color(green)("Step 4:"#
Use: #color(blue)( a^m/a^n = a^(m-n)#
#[x^(7/3)-x^(1/3)]*y#
#x^(6/3)*y#
#rArr x^2*y#
Hence,
#color(blue)((\frac { x ^ { 7} y ^ { 3} } { x } ) ^ { \frac { 1} { 3} }=x^2y#
Hope it helps.