For #f(x)=x-x^3-x^2# what is the equation of the tangent line at #x=12#?

1 Answer
May 5, 2018

#f(12)=12-1728-144=-1860#
So the point of tangency is #(x_0,y_0)=(12,-1860)#.

Since #f'(x)=1-3x^2-2x#, the slope of the tangent line at #x=12# is #m=f'(12)=1-432-24=-455#.

So the equation of the tangent line at the point #(12,-1860)# is

#y-y_0 = m(x-x_0)#

#y+1860=-455(x-12)#

#y+1860=-455x+5460#

#y=-455x+3600#