Here,
#f(x)=I=intxcotx^2dx=intcotx^2*xdx#
Let, #x^2=u=>2xdx=du=>xdx=1/2du#
So,
#I=intcotu*1/2du#
#=1/2ln|sinu|+c,where,u=x^2#
#=>f(x)=1/2ln|sinx^2|+c...to(A)#
Given that,
#f((5pi)/4)=0#
#=>1/2ln|sin((5pi)/4)^2|+c=0#
#=>2c=-ln|sin((25pi^2)/16)|#
#=>2c=ln|(1/(sin((25pi^2)/16)))|#
#=>c=1/2ln|(1/(sin((25pi^2)/16)))|...to(1)#
Now,
#(25xxpi^2)/16
~~15.42....#
#sin((25pi^2)/16)~~0.2659... in[-1,1]#
#1/(sin((25pi^2)/16))~~3.7606...#
#ln|1/(sin((25pi^2)/16))| ~~1.3245...#
#1/2*ln|1/(sin((25pi^2)/16))| ~~0.6623#
Hence, from #(1)#
#c ~~ #0.6623
Thus,
#f(x)=1/2ln|sinx^2|+c,where, c~~0.6623#