Here,
#I=intx^3sqrt(16-x^2)dx#
Let, #x=4sinu=>dx=4cosudu#
#and sinu=x/4=>cosu=sqrt(1-sin^2u)=sqrt(1-x^2/16#
#=>cosu=sqrt(16-x^2)/4...to(A)#
#I=int64sin^3usqrt(16-16sin^2u)xx4cosudu#
#=256intsin^3uxx4cosuxxcosudu#
#I=1024intsin^3ucos^2udu#
#I=4^5int(1-cos^2u)cos^2uxxsinudu#
#=4^5[intcos^2usinudu-intcos^4usinudu]#
#=4^5[-int(cosu)^2(-sinu)du+int(cosu)^4(-sinu)du]#
#=4^5[-(cosu)^3/3+(cosu)^5/5]+c#
#=4^5[(cosu)^5/5-(cosu)^3/3]+c...to#from #(A)#
#=4^5[(sqrt(16-x^2))^5/(5xx4^5)-(sqrt(16-x^2))^3/(3xx4^3)]+c#
#=(sqrt(16-x^2))^5/5-4^2xx(sqrt(16-x^2))^3/3+c#
#I=(sqrt(16-x^2))^5/5-(16(sqrt(16-x^2))^3)/3+c#