What is the antiderivative of #(2+x^2)/(1+x^2)#?

1 Answer
May 10, 2018

#x+tan^-1(x)+C#

Explanation:

Given: #int(2+x^2)/(1+x^2) \ dx#.

We can split as follows:

#=int(1+1+x^2)/(1+x^2) \ dx#

#=int(1+x^2)/(1+x^2)+1/(1+x^2) \ dx#

#=int(1+x^2)/(1+x^2) \ dx+int1/(1+x^2) \ dx#

The first integral is trivial, and the second one is a common integral which comes out to #arctan(x)# or #tan^-1(x)#.

#=int1 \ dx+tan^-1(x)+C#

#=x+tan^-1(x)+C#