How do you find the exact value of #2cos^2theta-3sintheta=0# in the interval #0<=theta<360#?
1 Answer
May 10, 2018
Explanation:
#"using the "color(blue)"trigonometric identity"#
#•color(white)(x)sin^2x+cos^2x=1#
#rArrcos^2x=1-sin^2x#
#rArr2(1-sin^2theta)-3sintheta=0#
#rArr2-2sin^2theta-3sintheta=0#
#rArr2sin^2theta+3sintheta-2=0#
#"we have a quadratic in sine which factors as"#
#(2sintheta-1)(sintheta+2)=0#
#"equate each factor to zero and solve for "theta#
#sintheta+2=0larrcolor(blue)"has no solution"#
#"since "-1<=sintheta<=1#
#2sintheta-1=0rArrsintheta=1/2#
#"since "sintheta>0" then "theta" in first/second quadrant"#
#theta=sin^-1(1/2)=30^@larrcolor(red)"first quadrant"#
#"or "theta=(180-30)^@=150^@larrcolor(red)"second quad"#
#rArrtheta=30^@" or "theta=150^@to(0<=theta<=360)#