Prove that √1+tan^2x /√1-sin^2=sec^2x?

Prove that, #sqrt(1+tan^2x)/sqrt(1-sin^2x)=sec^2x.#

2 Answers
May 10, 2018

Please see below.

Explanation:

We know that,

#color(red)((1)1+tan^2theta=sec^2theta#

#color(blue)((2)1-sin^2theta=cos^2theta#

#color(violet)((3)costheta=1/sectheta#

Here,

#sqrt(1+tan^2x)/sqrt(1-sin^2x)=sec^2x#

Let,

#LHS=sqrt(1+tan^2x)/sqrt(1-sin^2x)#

Using #(1) and (2)# we get

#LHS=sqrt(color(red)(sec^2x))/sqrt(color(blue)(cos^2x))#

#color(white)(LHS)=secx/color(violet)(cosx#

#color(white)(LHS)=secx/color(violet)((1/secx)#

#color(white)(LHS)=secx*secx#

#color(white)(LHS)=sec^2x#

#:.LHS=RHS#

If your question is different than above answer,

then type your question again.

May 10, 2018

#"see explanation"#

Explanation:

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)1+tan^2x=sec^2x#

#rArrsqrt(1+tan^2x)=secx#

#•color(white)(x)sin^2x+cos^2x=1#

#rArrsqrt(1-sin^2x)=cosx#

#"consider the left side"#

#rArrsqrt(1+tan^2x)/sqrt(1-sin^2x)#

#=secx/cosx#

#=1/cosx xx1/cosx#

#=1/cos^2x=sec^2x=" right side "rArr"verified"#