Can someone help me check if this matrix is diagonalisable?

#[(4,-5), (2,3)]#

1 Answer
May 11, 2018

See below

Explanation:

#[(4,-5), (2,3)]#

From the characteristic equation:

#lambda^2 - Tr(M) lambda + det(M) = 0#

#implies lambda^2 - 7 lambda + 22 = 0#

Solve the quadratic for eigenvalues:

  • #lambda_(1,2) = (7 pm i sqrt(39))/2#

These will deliver 2 distinct eigenvectors so you can diagonalise .

For eigenvectors #bb alpha_(1,2)# , use #M bb alpha_i = lambda_i bb alpha_i#:

#[(4,-5), (2,3)] bb alpha_1 = (7 + i sqrt(39))/2 bb alpha_1 #

  • #implies 4 x - 5 y = (7 + i sqrt(39))/2 x#

  • #5y = (8 - 7 - i sqrt(39))/2 x#

#implies y = (1 - i sqrt(39) )/10 x#

A first eigenvector is:

#bb alpha_1 = [(1),((1 - i sqrt(39) )/10)]#

For the second:

#[(4,-5), (2,3)] bb alpha_2 = (7 - i sqrt(39))/2 bb alpha_2 #

  • #4 x - 5 y = (7 - i sqrt(39))/2 x#

#implies y = (1 + i sqrt(39) )/10 x#

A second eigenvector is:

#bb alpha_2 = [(1),( (1 + i sqrt(39) )/10)]#