#int 1/(1-sin^4(x)) dx=#?

2 Answers
May 12, 2018

# 1/2tanx-1/(2sqrt2)*arc tan(1/sqrt2*cotx)+C#.

Explanation:

Let, #I=int1/(1-sin^4x)dx#.

#:. I=1/2int2/{(1-sin^2x)(1+sin^2x)}dx#,

#=1/2int{(1-sin^2x)+(1+sin^2x)}/{(1-sin^2x)(1+sin^2x)}dx#,

#=1/2int{(1-sin^2x)/((1-sin^2x)(1+sin^2x))+(1+sin^2x)/((1-sin^2x)(1+sin^2x))}dx#,

#=1/2int{1/(1+sin^2x)+1/(1-sin^2x)}dx#,

#=1/2I_1+1/2int1/cos^2xdx#,

#=1/2I_1+1/2intsec^2xdx#,

#=1/2I_1+1/2tanx," where, "#

#I_1=int1/(1+sin^2x)dx#,

#=int1/{sin^2x(csc^2x+1)}dx#,

#=intcsc^2x/{(cot^2x+1)+1}dx#,

#=intcsc^2x/(cot^2x+2)dx#,

#=-int(-csc^2x)/(cot^2x+2)dx#,

#=-intdy/{y^2+(sqrt2)^2},...[because, cotx=y rArr -csc^2xdx=dy]#,

#=-1/sqrt2*arc tan(y/sqrt2)#,

#=-1/sqrt2*arc tan(1/sqrt2*cotx)#.

Altogether, we have,

#I=1/2tanx-1/(2sqrt2)*arc tan(1/sqrt2*cotx)+C#.

Feel the Joy of Maths.!

May 12, 2018

The answer is #=1/2tanx+1/(2sqrt2)arctan(sqrt2tanx)+C#

Explanation:

Perform the substitution

#sinx=tanx/secx#

#sec^2x=1+tan^2x#

Therefore,

#1/(1-sin^4x)=1/(1-(tan^4x/sec^4x))=(sec^4x)/(sec^4x-tan^4x)#

#=(sec^2x(1+tan^2x))/((1+tan^2x)^2-tan^4x)#

#=(sec^2x(1+tan^2x))/(1+2tan^2x)#

Then,

Let #u=tanx#, #=>#, #du=sec^2xdx#

Therefore the integral is

#I=int(dx)/(1-sin^4x)=int(sec^2x(1+tan^2x)dx)/(1+2tan^2x)#

#=int((1+u^2)du)/(1+2u^2)#

#=int((1/2(1+2u^2)+1/2)du)/(1+2u^2)#

#=1/2intdu+1/2int(1du)/(1+2u^2)#

#=1/2u+1/2int(1du)/(1+2u^2)#

Let #v=sqrt2u#, #=>#, #dv=sqrt2du#

#1/2int(1du)/(1+2u^2)=1/(2sqrt2)int(dv)/(1+v^2)#

#=1/(2sqrt2)arctanv#

#=1/(2sqrt2)arctan(sqrt2u)#

#=1/(2sqrt2)arctan(sqrt2tanx)#

Putting it all together

#I=1/2tanx+1/(2sqrt2)arctan(sqrt2tanx)+C#