#cosx+sinx=sqrt(cosx)#?

1 Answer
May 13, 2018

#rarrx=2npi# where #n in ZZ#

Explanation:

#rarrcosx+sinx=sqrtcosx#

#rarrcosx-sqrtcosx=-sinx#

#rarr(cosx-sqrtcosx)^2=(-sinx)^2#

#rarrcos^2x-2cosx*sqrtcosx+cosx=sin^2x=1-cos^2x#

#rarr2cos^2x-2cosx*sqrtcosx+cosx-1=0#

Let #sqrtcosx=y# then #cosx=y^2#

#rarr2*(y^2)^2-2*y^2*y+y^2-1=0#

#rarr2y^4-2y^3+y^2-1=0#

#rarr2y^3(y-1)+(y+1)*(y-1)=0#

#rarr[y-1][2y^3+y+1]=0#

Taking , #rarry-1=0#

#rarrsqrtcosx=1#

#rarrcosx=1=cos0#

#rarrx=2npi+-0=2npi# where #n in ZZ# which is the general

solution for #x#.