#rarrcosx+sinx=sqrtcosx#
#rarrcosx-sqrtcosx=-sinx#
#rarr(cosx-sqrtcosx)^2=(-sinx)^2#
#rarrcos^2x-2cosx*sqrtcosx+cosx=sin^2x=1-cos^2x#
#rarr2cos^2x-2cosx*sqrtcosx+cosx-1=0#
Let #sqrtcosx=y# then #cosx=y^2#
#rarr2*(y^2)^2-2*y^2*y+y^2-1=0#
#rarr2y^4-2y^3+y^2-1=0#
#rarr2y^3(y-1)+(y+1)*(y-1)=0#
#rarr[y-1][2y^3+y+1]=0#
Taking , #rarry-1=0#
#rarrsqrtcosx=1#
#rarrcosx=1=cos0#
#rarrx=2npi+-0=2npi# where #n in ZZ# which is the general
solution for #x#.