Set #y=0=3x^2+2x-3" ".........................Equation(1)#
Compare to #y=ax^2+bx+c#
#x=(-b+-sqrt(b^2-4ac))/(2a)#
Set #a=3; b=2; c=-3#
#=> x=(-2+-sqrt(2^2-4(3)(-3)))/(2(3))#
#x=-1/3+-sqrt(40)/6#
#x=-1/3+-(cancel(2)^1sqrt(10))/cancel(6)^3#
#x=-1/3+-sqrt(10)/3#
#x=(-1+sqrt(10))/3 and x=(-1-sqrt(10))/3#
#(x+(1-sqrt(10))/3) (x+(1+sqrt(10))/3) " "..............Equation(2)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Testing "Equation(2))#
#x (x+(1+sqrt(10))/3)color(white)("d") +color(white)("d")(1-sqrt(10))/3 (xcolor(white)("d")+color(white)("ddd")(1+sqrt(10))/3)#
#x^2+x/3+cancel((xsqrt(10))/3) color(white)("ddd")+color(white)("ddd")x/3-cancel((xsqrt(10))/3)+color(white)("d")(1^2-(sqrt(10))^2)/9#
#x^2+(2x)/3+1/9-10/9#
#x^2+(2x)/3-1#
So #Equation(2)# is not the same value as #Equation(1)# To make it do so multiply everything by 3
#y=3(x^2+(2x)/3-1) = 3x^2+2x-3 color(red)(larr" As required"#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thus the answer is:
#3(x+(1-sqrt(10))/3) (x+(1+sqrt(10))/3)" ".........Equation(2_a)#