How do you find the VERTEX of a parabola #y=x^2-3x-10#?

1 Answer
May 14, 2018

#"vertex "=(3/2,-49/4)#

Explanation:

#"given a parabola in "color(blue)"standard form "color(white)(x)ax^2+bx+c#

#"then the x-coordinate of the vertex is"#

#•color(white)(x)x_(color(red)"vertex")=-b/(2a)#

#y=x^2-3x-10" is in standard form"#

#"with "a=1,b=-3" and "c=-10#

#rArrx_("vertex")=-(-3)/2=3/2#

#"substitute this value into the equation for y"#

#y_("vertex")=(3/2)^2-3(3/2)-10=-49/4#

#rArrcolor(magenta)"vertex "=(3/2,-49/4)#