I presume that, #y=(cosx+sinx)/(cosx-sinx)#,
#={cosx(1+sinx/cosx)}/{cosx(1-sinx/cosx)}#,
#=(1+tanx)/(1-tanx)#,
# rArr y=tan(pi/4+x)#
#:. dy/dx=sec^2(pi/4+x)*d/dx(pi/4+x)..."[The Chain Rule]"#,
#=sec^2(pi/4+x)#.
Also, #dy/dx=1/cos^2(pi/4+x)#,
#=1/(cos(pi/4+x))^2#,
#=1/(cos(pi/4)cosx-sin(pi/4)sinx)^2#,
#=1/(1/sqrt2*cosx-1/sqrt2*sinx)^2#.
# rArr dy/dx=2/(cosx-sinx)^2, or, #
#dy/dx=2/(cos^2x-2cosxsinx+sin^2x)=2/(1-sin2x)#.