#int_0^2" "x^2/sqrt(16-x^2)" "dx#
Let #x=4sin(u)# and #dx=4cos(u)" "du#
#int_0^2" "(16sin^2(u)*4cos(u))/sqrt(16-16sin^2(u))" "du#
Simplify,
#int_0^2" "(16sin^2(u)*4cos(u))/(sqrt16*sqrt(1-sin^2(u)))" "du#
Refine,
#int_0^2" "(16sin^2(u)*cancel(4)cos(u))/(cancel(sqrt16)*sqrt(1-sin^2(u)))" "du#
Hence,
#int_0^2" "(16sin^2(u)cos(u))/sqrt(1-sin^2(u))" "du#
Apply trigonometric functions,
#int_0^2" "(16sin^2(u)cos(u))/sqrt(cos^2(u))" "du#
Simplify,
#int_0^2" "(16sin^2(u)cancel(cos(u)))/cancel(cos(u))" "du#
Hence,
#int_0^2" "16sin^2(u)" "du#
Apply trigonometric function,
#int_0^2" "16*(1-cos(2u))/2" "du#
Simplify and bring out the constant,
#8int_0^2" "1-cos(2u)" "du#
Integrate,
#8[u-1/2sin(2u)]_0^2#
Substitute #u=arcsin(x/4)#
#8[arcsin(x/4)-1/2sin(2arcsin(x/4))]_0^2#
Compute boundaries,
#8[(arcsin(1/2)-1/2sin(2arcsin(1/2)))-arcsin(0)-1/2sin(2arcsin(0)))]#
Solve,
#8(pi/6-sqrt3/4)~~0.72469#