How? solve this please

enter image source here

2 Answers
May 16, 2018

See process below

Explanation:

Lets aply the change #x=4sinu# then #dx=4cosudu# and

#sqrt(16-16sin^2)=sqrt(16(1-sin^2u))=4cosu#

In our integral #int(16sin^2u·cancel4cancelcosudu)/(cancel4cancelcosu)=int16sin^2udu=16I#

Attack this last integral by parts

#u=sinu# and #dv=sinudu# from here #v=-cosu# and #du=cosudu#

#16I=-sinucosu+intcos^2udu=-sinucosu+int(1-sin^2u)du=-sinucosu+u-intsin^2udu#. Thus, finally

#17I=-sinucosu+u# transposing terms #I=u/17-(sinucosu)/17#

Un-doing the change #u=arcsin(x/4)#

#I=1/17arcsin(x/4)-1/17·x/4sqrt(1-x^2/4^2)+C#

May 16, 2018

#8(pi/6-sqrt3/4)~~0.72469#

Explanation:

#int_0^2" "x^2/sqrt(16-x^2)" "dx#

Let #x=4sin(u)# and #dx=4cos(u)" "du#

#int_0^2" "(16sin^2(u)*4cos(u))/sqrt(16-16sin^2(u))" "du#

Simplify,

#int_0^2" "(16sin^2(u)*4cos(u))/(sqrt16*sqrt(1-sin^2(u)))" "du#

Refine,

#int_0^2" "(16sin^2(u)*cancel(4)cos(u))/(cancel(sqrt16)*sqrt(1-sin^2(u)))" "du#

Hence,

#int_0^2" "(16sin^2(u)cos(u))/sqrt(1-sin^2(u))" "du#

Apply trigonometric functions,

#int_0^2" "(16sin^2(u)cos(u))/sqrt(cos^2(u))" "du#

Simplify,

#int_0^2" "(16sin^2(u)cancel(cos(u)))/cancel(cos(u))" "du#

Hence,

#int_0^2" "16sin^2(u)" "du#

Apply trigonometric function,

#int_0^2" "16*(1-cos(2u))/2" "du#

Simplify and bring out the constant,

#8int_0^2" "1-cos(2u)" "du#

Integrate,

#8[u-1/2sin(2u)]_0^2#

Substitute #u=arcsin(x/4)#

#8[arcsin(x/4)-1/2sin(2arcsin(x/4))]_0^2#

Compute boundaries,

#8[(arcsin(1/2)-1/2sin(2arcsin(1/2)))-arcsin(0)-1/2sin(2arcsin(0)))]#

Solve,

#8(pi/6-sqrt3/4)~~0.72469#