What is the derivative of #f(x) = sin(x)-cos^2(x)#?

2 Answers
May 17, 2018

Any of these (all identical):
#f'(x)=cosx+2xcosxsinx#
#f'(x)=cosx(1+2xsinx)#
#f'(x)=cosx+xsin(2x)#

Explanation:

#f'(x)=d/dx[sinx]-d/dx[cos^2x]#

#d/dx[sinx]=cosx#

#d/dx[cos^2x]=2xcosxd/dx[cosx]=-2xcosxsinx#

#f'(x)=cosx-(-2xcosxsinx)#

#f'(x)=cosx+2xcosxsinx=cosx(1+2xsinx)orcosx+xsin(2x)#

May 17, 2018

See answer below

Explanation:

Given #f(x)=sinx-cos^2x#

Derivative is given by #f´(x)=cosx-2cosx·(-sinx)=2sinxcosx+cosx=sin2x+cosx#