Simplify:
#(t^2-25)/(t^2+t-20)#
Factor the numerator using the formula for a difference of squares:
#(a^2+b^2)=(a+b)(a-b)#,
where:
#a=t^2# and #b=5^2#.
#(t^2-5^2)=color(red)((t+5)color(green)((t-5))#
#color(red)((t+5)color(green)((t-5)))/(t^2+t-20)#
Factor the denominator.
Find two numbers that when added equal #1# and when multiplied equal #-20#. The numbers #-4# and #5# meet the requirements.
#t^2+t-20=color(red)((t+5))color(purple)((t-4))#
#color(red)((t+5)color(green)((t-5)))/color(red)((t+5)color(purple)((t-4))#
Cancel #t+5#.
#(cancel(t+5)(t-5))/(cancel(t+5)(t-4))#
#(t-5)/(t-4)#