Find the general solution of #(dy/dx) = y^2-4# ?

Differential equations

2 Answers
May 19, 2018

The general solution is #y=(-2(e^(4(x+C))+1))/(e^(4(x+C))-1)#

Explanation:

This is a first order separable differential equation

#dy/dx=y^2-4#

#dy/(y^2-4)=dx#

#intdy/(y^2-4)=intdx#

Perform partial fraction

#1/(y^2-4)=A/(y+2)+B/(y-2)#

#=(A(y-2)+B(y+2))/((y^2-4))#

Compare the numerators

#1=A(y-2)+B(y+2)#

Let #y=-2#, #=>#, #1=-4A#, #A=-1/4#

Let #y=2#, #=>#, #1=4B#, #B=1/4#

Therefore,

#1/(y^2-4)=(-1/4)/(y+2)+(1/4)/(y-2)#

So,

#intdy/(y^2-4)=int(-1/4dy)/(y+2)+int(1/4dy)/(y-2)=intdx#

#1/4ln(|y-2|)-1/4ln(|y+2|)=x+C#

#1/4ln((y-2)/(y+2))=x+C#

#((y-2)/(y+2))=e^(4(x+C))#

Solving for #y#

#((y-2)/(y+2)+1)=e^(4(x+C))+1#

#(2y)/(y+2)=e^(4(x+C))+1#..........#(1)#

#((y-2)/(y+2)-1)=e^(4(x+C))-1#

#(-4)/(y+2)=e^(4(x+C))-1#.............#(2)#

Dividing equation #(1)# by equation #(2)#

#(y/-2)=(e^(4(x+C))+1)/(e^(4(x+C))-1)#

#y=(-2(e^(4(x+C))+1))/(e^(4(x+C))-1)#

May 19, 2018

# y = 2\ (1+ Ce^(4x) )/(1- Ce^(4x)) #

Explanation:

This is separable:

#(dy)/(y^2 - 4) = dx#

And

#1/(y^2 - 4) = 1/4( 1/( y - 2) - 1/( y + 2) )#

Which leaves you with:

#1/4 int \ 1/( y - 2) - 1/( y + 2) \ dy = int \ dx#

# lnabs( y - 2) - ln abs( y + 2) = 4x+C#

# abs( y - 2)/abs( y + 2) = Ce^(4x)#

For #y gt 2# or #y lt - 2#, that's:

# ( y - 2)/( y + 2) = Ce^(4x)#

Otherwise it's:

# ( y - 2)/( y + 2) = -Ce^(4x)#, ie just some constant with a different sign.

So proceeding with #C#:

# ( y - 2)/( y + 2) = Ce^(4x) implies y = 2\ (1+ Ce^(4x) )/(1- Ce^(4x)) #