Here,
#(1)(x+2)/(x(x-4))=1/2[(2x+4)/(x(x-4))]#
#color(white)((x+2)/(x(x-4)))=1/2[(3x-(x-4))/(x(x-4))]#
#color(white)((x+2)/(x(x-4)))=1/2[(3x)/(x(x-4))-(x-4)/(x(x-4))]#
#color(white)((x+2)/(x(x-4)))=1/2[3/(x-4)-1/x]#
#color(white)((x+2)/(x(x-4)))=3/(2(x-4))-1/(2x)#
#(2)(x+2)/(x(x-4))=A/(x-4)+B/x#
#=>x+2=Ax+B(x-4)#
Take ,
#x=4=>4+2=A(4)=>4A=6=>A=3/2#
#x=0=>0+2=B(-4)=>B=-2/4=-1/2#
Subst. values of #A and B# into #(2)#
#(x+2)/(x(x-4))=(3/2)/(x-4)+(-1/2)/x#
#(x+2)/(x(x-4))=3/(2(x-4))-1/(2x)#