How to solve #xy(dy/dx +1) = x^2 + y^2# by finding the general solution?
homogeneous differential equations
homogeneous differential equations
1 Answer
# 1-y/x = Bxe^(-y/x) #
Explanation:
We have:
# xy(dy/dx+1) = x^2+y^2 #
Apply the substitution:
#y=vx => dy/dx = v + x(dv)/dx #
So that:
# x(vx)(v + x(dv)/dx + 1) = x^2 + (vx)^2 #
# :. v(v + x(dv)/dx + 1) = 1 + v^2 #
# :. v^2 + xv(dv)/dx + v = 1 + v^2 #
# :. xv(dv)/dx + v = 1 #
# :. (v)/(1-v) (dv)/dx = 1/x #
The is a now a Separable DE, so by "separating the variables" , we get
# int \ (v)/(1-v) \ dv = int \ 1/x \ dx #
For the LHS integral we can perform a substitution, Let:
# u = 1-v => (du)/dx = (dv)/dx # and#v=1-u#
Substituting into the integral:
# int \ (v)/(1-v) \ dv = int \ ( 1-u)/(u) \ du #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = int \ 1/u- 1 \ du #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = lnu-u #
Restoring the
# ln(1-v)-(1-v) = ln x + C #
# :. ln(1-v) - ln x -lnA = 1-v #
# :. ln ((1-v)/(Ax))= 1-v #
# :. (1-v)/(Ax) = e^(1-v) #
# :. 1-v = Axe^(1-v) #
# :. 1-v = Bxe^(-v) #
And, Restoring the
# :. 1-y/x = Bxe^(-y/x) #