What is #int cos^2xsinx-tan^2xcotx dx#?

1 Answer
May 22, 2018

#int cos^2(x)sin(x)-tan^2(x)cot(x) dx = lnabs(cos(x))-cos^3(x)/x+C#

Explanation:

Split the integral up into two

#int cos^2(x)sin(x)-tan^2(x)cot(x) dx = int cos^2(x)sin(x)dx - int tan^2(x)cot(x) dx#

First Step

For #int cos^2(x)sin(x)dx#,

Let #u=cos(x)# and thus #du=-sin(x)dx#

Substituting, you get

#int cos^2(x)sin(x)dx=-int cos^2(x)(-sin(x)dx)=-int u^2du=-u^3/3+C =-cos^3(x)/3+C#

Second Step

For #int tan^2(x)cot(x) dx#,

Since #tan^2(x)cot(x)=tan^2(x)/tan(x)=tan(x)#

#int tan^2(x)cot(x)=int tan(x)dx#

At this point, you can use a formula sheet to get the answer directly, but if you are interested, you can follow along the next few steps.

#int tan(x)dx = int sin(x)/cos(x) dx#

Now if you let #w=cos(x)#, then #dw=-sin(x)dx#

#int sin(x)/cos(x) dx = -int 1/cos(x) * -sin(x)dx=-int 1/w dw = -lnabs(w)+C=lnabs(cos(x))+C#

Final step

Hence, by subtracting the two integrals, one gets

#int cos^2(x)sin(x)-tan^2(x)cot(x) dx = -cos^3(x)/x - (-lnabs(cos(x)))+C = lnabs(cos(x))-cos^3(x)/x+C#