As the collision is elastic, there is conservation of momentum and conservation of kinetic energy.
#m_1u_1+m_2u_2=m_1v_1+m_2v_2#
#1/2m_1u_1^2+1/2m_2u_2^21/2m_1v_1^2+1/2m_2v_2^2#
Threfore,
#5*12+2*0=5v_1+2v_2#
#5v_1+2v_2=60#............................#(1)#
#1/2*5*12^2+1/2*2*0^2=1/2*5v_1^2+1/2*2v_2^2#
#5v_1^2+2v_2^2=720#.........................#(2)#
Solving for #v_1# and #v_2# in equations #(1)# and #(2)#
#{(5v_1+2v_2=60),(5v_1^2+2v_2^2=720):}#
#<=>#, #{(v_2=1/2(60-5v_1)),(5v_1^2+2v_2^2=720):}#
#5v_1^2+2*(1/2(60-5v_1))^2=720#
#10v_1^2+3600-600v_1+25v_1^2=1440#
#35v_1^2-600v_1+2160=0#
#v_1=(600+-sqrt((-600)^2-4*35*2160))/(2*35)#
#=(600+-240)/70#
Therefore,
#v_1=12ms^-1# or #v_1=5.14ms^-1#
#v_2=0ms^-1# or #v_2=17.14ms^-1#