How do you use the chain rule to differentiate #y=((x+1)/(x-2))^5#?

2 Answers
May 22, 2018

#(dy)/(dx) = (-15(x+1)^4)/(x-2)^6#

Explanation:

#y=((x+1)/(x-2))^5#

Let u=#(x+1)/(x-2)#
so #y=u^5#
and #(dy)/(du) = 5u^4#

then,

#(du)/(dx)=((x-2)(1)-(x+1)(1))/(x-2)^2#

#(du)/(dx)=(x-2-x-1)/(x-2)^2#

#(du)/(dx)=-3/(x-2)^2#

#(dy)/(dx) = (dy)/(du)times(du)/(dx)#

#(dy)/(dx) = 5u^4times-3/(x-2)^2#

#(dy)/(dx) = 5((x+1)/(x-2))^4times-3/(x-2)^2#

#(dy)/(dx) = (-15(x+1)^4)/(x-2)^6#

May 22, 2018

#dy/dx=-(15(x+1)^4)/(x-2)^6#

Explanation:

#"given "y=f(g(x))" then"#

#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#

#rArrdy/dx=5((x+1)/(x-2))^4xxd/dx((x+1)/(x-2))#

#"differentiate "(x+1)/(x-2)" using the "color(blue)"quotient rule"#

#"given "f(x)=(g(x))/(h(x))" then"#

#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#

#g(x)=x+1rArrg'(x)=1#

#h(x)=x-2rArrh'(x)=1#

#rArrd/dx((x+1)/(x-2))#

#=(x-2-x-1)/(x-2)^2=-3/(x-2)^2#

#rArrdy/dx=5((x+1)/(x-2))^4xx-3/(x-2)^2#

#color(white)(rArrdy/dx)=-(15(x+1)^4)/(x-2)^6#