How do you use the chain rule to differentiate #y=((x+1)/(x-2))^5#?
2 Answers
Explanation:
Let u=
so
and
then,
Explanation:
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#rArrdy/dx=5((x+1)/(x-2))^4xxd/dx((x+1)/(x-2))#
#"differentiate "(x+1)/(x-2)" using the "color(blue)"quotient rule"#
#"given "f(x)=(g(x))/(h(x))" then"#
#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#
#g(x)=x+1rArrg'(x)=1#
#h(x)=x-2rArrh'(x)=1#
#rArrd/dx((x+1)/(x-2))#
#=(x-2-x-1)/(x-2)^2=-3/(x-2)^2#
#rArrdy/dx=5((x+1)/(x-2))^4xx-3/(x-2)^2#
#color(white)(rArrdy/dx)=-(15(x+1)^4)/(x-2)^6#