Integration of #x^3cosx# ?
1 Answer
May 22, 2018
Explanation:
The integral will take some form like:
#P(x)cos(x) + Q(x)sin(x) + C#
where
Then:
#d/(dx)(P(x)cos(x) + Q(x)sin(x) + C)#
#=(P'(x)+Q(x))cos(x)+(Q'(x)-P(x))sin(x)#
So equating coefficients, we want to solve:
#{ (P'(x) + Q(x) = x^3), (Q'(x)-P(x) = 0) :}#
Hence:
#Q''(x) + Q(x) = x^3#
Hence:
#Q(x) = x^3-6x#
and:
#P(x) = Q'(x) = 3x^2-6#
So:
#int \ x^3 cos(x) \ dx = (3x^2-6)cos x+(x^3-6x) sin x+C#