In a right angled triangle #ABC# right angled at #B# prove that #(AB)^3+(BC)^3<(AC)^3#?

1 Answer
May 22, 2018

In #DeltaABC#, #angle ABC=90^@#.
So #AC# being hypotenuse

#0 < (AB)/(AC)<1and 0< (BC)/(AC)<1#

So

#(AB)^3/(AC)^3<(AB)^2/(AC)^2....[1]#

And

#(BC)^3/(AC)^3<(BC)^2/(AC)^2....[2]#

Adding [1] and [2] we get

#(AB)^3/(AC)^3+(BC)^3/(AC)^3<(AB)^2/(AC)^2+(BC)^2/(AC)^2#

#=>(AB)^3/(AC)^3+(BC)^3/(AC)^3<(AB^2+BC^2)/(AC^2)#

[By Pythagorean theorem

#AB^2+BC^2=AC^2#]

#=>(AB)^3/(AC)^3+(BC)^3/(AC)^3<(AC^2)/(AC^2)=1#

#=>(AB^3+BC^3)/(AC^3)<1#

#=>AB^3+BC^3 < AC^3#

Proved