How do you solve #\ln x = 2\ln 3#?

2 Answers
May 22, 2018

#x = 9#

Explanation:

use the log law: #a log x = log x^a#
(note that #ln x = log_e x#, so the law can also be used for #ln# expressions)

here, #a ln x = 2 ln 3#
#a = 2, x = 3#

#ln x^a#, then, #= ln 3^2#
#ln 3^2 = ln 9#

if #ln x = ln 9#, then #x = 9#

May 22, 2018

#x=9#

Explanation:

#"using the "color(blue)"laws of logarithms"#

#•color(white)(x)logx^nhArrnlogx#

#•color(white)(x)logx=logyrArrx=y#

#lnx=ln3^2=ln9rArrx=9#