Given that, #sinx-cosx-tanx=-1#.
#:. sinx-cosx-sinx/cosx+1=0#.
#:. (sinx-cosx)-(sinx/cosx-1)=0#.
#:. (sinx-cosx)-(sinx-cosx)/cosx=0#.
#:. (sinx-cosx)cosx-(sinx-cosx)=0#.
#:. (sinx-cosx)(cosx-1)=0#.
#:. sinx=cosx or cosx=1#.
#" Case 1 : "sinx=cosx#.
Observe that #cosx!=0, because," if otherwise; "tanx" becomes"#
undefined.
Hence, dividing by #cosx!=0, sinx/cosx=1, or, tanx=1#.
#:. tanx=tan(pi/4)#.
#:. x=kpi+pi/4, k in ZZ," in this case"#.
#" Case 2 : "cosx=1#.
#"In this case, "cosx=1=cos0, :. x=2kpi+-0, k in ZZ#.
Altogether, we have,
#"The Solution Set"={2kpi}uu{kpi+pi/4}, k in ZZ#.